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Dislocation theory for geophysical applications

By J. D. EsuELBY
Department of the Theory of Materials, University of Sheffield

A fault plane which has undergone slip over a limited area, a thin intrusion or a crack whose faces have
been caused to slide over one another or separate by the action of an applied stress are all physical
realizations of a dislocation, that is, an internal surface in an elastic solid across which there is a dis-
continuity of displacement. Since this discontinuity varies from point to point of the internal surface it is
actually aso-called Somigliana dislocation. It can, however, be built up from the more familiar dislocations
of crystal physics which have a constant displacement discontinuity.

Methods of finding the elastic displacement field around a dislocation in a solid with free surfaces
will be outlined. The field of an infinitesimal dislocated area in a semi-infinite solid can be found quite
simply, and from it the field of a general dislocation can be obtained by integration. The energy
associated with a dislocation is discussed in connexion with energy release in earthquakes.

1. INTRODUCTION: SOMIGLIANA DISLOCATIONS

Figure 1a represents a fault plane in which relative slip of the faces is confined to the interior of
the curve C. Figure 15 shows a cross-section of] say, a thin igneous intrusion. Figure 1¢ represents
the collapse of aworked-out coal-seam. These are all examples of so-called Somigliana dislocations
(Somigliana 1914, 1915; Gebbia 19o2). The formal construction of a Somigliana dislocation in an
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Ficure 1. Somigliana dislocations.

elastic continuum goes as follows: make a cut over a surface S (figure 1d) (not necessarily
plane) bounded by a curve C and give the two faces of the cut a relative displacement b(#) which
varies from point to point r of S. Where this leaves a gap (as in figure 1) fill it with a layer of the
same material, and where there would be interpenetration of matter (as in figure 1¢) prevent
this by scraping away a layer on one face or the other. Finally weld the material together again.
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332 J.D. ESHELBY

Cracks can be treated in terms of Somigliana dislocations. Suppose that a crack forms in
a body under an applied stress, and for simplicity let the faces of the crack slide over one another
but not separate. We may say that the applied stress has induced in the medium a Somigliana
dislocation of the kind shown in figure 1a. If the faces of the crack are freely slipping the dis-
continuity vector b will adjustitselfin such a way that the surface tractions on §' due to the applied
stress and to the dislocation exactly cancel. If there is friction between the faces the cancellation
may be imperfect. In the freely slipping case the dislocation disappears when the applied stress is
removed. With friction the surfaces may stick at some stage of the unloading to leave behind
a ‘fossilized’ remnant of the Somigliana dislocation originally produced by the applied stress.

A crack whose faces separate under load may be looked at in the same way; as long as it is
held open the elastic field is unaffected if we fail to fill in the gap according to the recipe above.

If the displacement discontinuity b is known as a function of position over S the elastic field
(displacement, strain, stress) which it produces, and the energy associated with it, can be
calculated, fairly easily if it is remote from free surfaces of the medium and otherwise with more
or less complicated corrections for the presence of the free surfaces (§2).

Somigliana dislocations are well suited to describe geophysical discontinuities, but the bulk
of modern dislocation theory (Nabarro 1967) considers only the subclass of them, Volterra dis-
locations, for which b is constant over the discontinuity surface. In §3 we describe some of their
properties and indicate how, if necessary, they can be used to synthesize Somigliana dislocations.

2. THE ELASTIC FIELD OF A SOMIGLIANA DISLOCATION

We shall use the following sign convention relating the discontinuity b and the normal n to §
(figure 1d). Draw an arrow (with head and tail) piercing § and defining the direction of its
normal. Then b is the displacement on the head side of § minus the value on the tail side.

To find the elastic displacement produced by a Somigliana dislocation in an infinite medium
imagine that, in addition to the dislocation, there is also a concentrated point force acting at the
point r at which we wish to find the displacement «, (r) due to the dislocation (figure 14d).

If we introduce the dislocation and then apply the force the work done on the medium is
simply the sum of the amounts £y, and Ej, of work done when either the dislocation or the force
is introduced by itself, because, in the linear theory of elasticity, the response of a body to external
loading is unaffected by internal stresses. On the other hand, if first the force and then the disloca-
tion is introduced the work done is £ + Ey, plus two extra terms. One of these is the work done
by the point force when its point of application shifts by the displacement which the dislocation
produces at r. The other is the work done by the surface tractions (produced by the point force)
on the two faces of the cut as the faces separate by b. But since the final state of the medium is the
same whether the dislocation or the point force is introduced first, the sum of these two extra
terms must be zero. This leads at once to the relation

() = [ () R0 mecs, (2.1)
where p{) () is the stress produced at a point #’on S by a point force of unit magnitude at r parallel
to the x, axis, and n;,is the normal to S at r'. The left-hand side is the work done by the unit force
moving through the dislocation displacement and the right-hand side is minus the work done
by the surface tractions at the cut. (For the sign of the second term compare the discussion follow-
ing equation (2.5) below.)
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In an isotropic medium with Lamé constants A and x# and the Poisson ratio o the Hooke law
relation between (% and the corresponding displacement can be written in the form
6U E)U aU

J

pR = (2.2)
where Uy is the x;-component of the displacement at r(xl, X9, X3) due to a unit force acting at
1’ (x1, x3, x3) parallel to the x-axis. If we use the explicit form

SN P S L P (2.3)
Smu| 2(1—0)0x; 0,

(Love 1927), and note that 9/0x,, is equivalent to — 0/dx,, when acting on |r — 7’|, equation (2.1)
becomes

U,

il

1

ug(r) = gc—a—_—-)i%klk,
with (Eshelby 1961)
9= —0  os Lm0y 8, L g (1—0) 8 —a—:vz
i1k = 3, Ox, Oy { 7* 3, (1—0) Ers i B
and I = fsbj(r') |7 — | my dS.

If the discontinuity surface is flat and happens to lie in a plane x3 = const. I;; and I}, are zero
and one only needs to calculate the three surface integrals

Iy =f b;(r') |r—1r'| dxy das.
8

The rest of the calculation is mere differentiation. We may regard (2.1) as exhibiting a finite
Somigliana dislocation as a mosaic of infinitesimal dislocations of area dS, normal n;, and a dis-
continuity vector b; which is, of course, effectively constant all over the small area dS. The
displacement produced by one of these elementary dislocations is

duz‘ = bj”/cdsl’%)> (2'4)

with p{? in the form (2.2). According to (2.3) we have Uy (r, ') = U, (¢, r) and so (2.4) with
(2.2) can be given a new interpretation: du; can be derived from the displacement Uj; at the
point of observation r due to a point force acting not, as hitherto, at r, but rather at #’. To do
this we have, according to (2.2) only to differentiate U;, with respect to the x;,, the coordinates of
the point of application, and form a suitable linear combination of the derivatives. In other
words, du; is the same as the displacement produced at r by a collection of force-doublets situated
at the position r’ of the elementary dislocation. If the plane of the dislocation is a plane x, = const.
and the displacement discontinuity is (b, 0, 0), parallel to the x,-axis, figure 2a, or, equally, the
plane is parallel to x; = const., and the discontinuity is (0, 4, 0), figure 25, we have

U, aU)
Oy

du; = pb dS(

which says that du; can be produced by a pair of equal and opposite force couples each
of moment b dS force-times—distance units, figure 2¢. If, on the other hand, the discontinuity
vector is (0, b, 0) and so normal to the plane x, = const. of the dislocation (figure 2¢) we have

du, —de[A paSe (A+2ﬂ)aUm],

0xy X3 Oxg
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which is the displacement due to three ‘double forces without moment’ (Love 1927) which
despite their name have, in an obvious sense, a moment (not a couple) which is actually
(A+2p) bdS for the vertical doublet and AbdS for the two horizontal ones (figure 2f). If we
had chosen to discuss the elementary dislocations of figure 24, b in a coordinate system rotated
through 45° in the plane of the paper we should have got the forces shown in figure 24, made
up of two double forces of moment + b dS which in fact produce the same displacement as the
couples in figure 2¢.
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Ficure 2. Equivalence between elementary dislocated areas and point-force clusters.

The displacement due to a dislocation in a body with stress-free surface 2, say, can be found
from the displacement #; of the same dislocation in an infinite medium in the following way.
Suppose that u; produces a surface traction p;;n; on 2. Calculate the displacement u; due to
surface tractions — p;;n; applied to the surface of a finite body bounded by X. Then u, + u; is the
required displacement since it has the required singularity inside X' and gives zero traction on 2.

For the case of a semi-infinite solid bounded by a stress-free plane surface (which should cover
many geophysical applications) a simple alternative treatment is possible. We go back to (2.4)
which says that the elastic field of an clementary dislocation in an infinite medium is the same as
that of a certain collection of point forces operating in an infinite medium. To adapt this expres-
sion to give the displacement in a half-space with, say, the surface x3 = 0 stress-free it is evidently
only necessary to take Uy in (2.4) to stand, as before, for the x;- component of displacement at r
due to a point force acting parallel to the x-axis at 7/, but now in a semi-infinite medium with
the plane x; = 0 stress-free. Formation of doublets by differentiating this new U with respect
to x, will not upset the fact that x5 = 01is stress-free. Integration will then give the field of a finite
dislocation in the semi-infinite medium.

The necessary results for the displacement due to a point force in a semi-infinite medium
with a stress-free surface have been given with various degrees of explicitness by Mindlin (1936),
Westergaard (1952), Lur’e (1964) and Solomon (1968). Mindlin & Cheng (1950) give the field
of doublets of the kind shown in figure 2. The result of inserting one of these expressions into (2.2)
plus (2.4) is decidedly complicated. Steketee (1958) has written out the displacement for an
elementary dislocation like the one in figure 2a with the plane of relative slip parallel to the free
surface for the special case where the Poisson ratio is + (A = u).T Even then the result is rather
cumbersome (see also Maruyama 1g64).

The energy change associated with the appearance or disappearance of a discontinuity surface

T In Steketee’s equations (7.18) and (7.20) 7 is a misprint for w.
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DISLOCATION THEORY FOR GEOPHYSICAL APPLICATIONS 335

is an important quantity. We begin with the case of the formation of a Somigliana dislocation
in an initially stress-free region.
The elastic energy of a body is given by the integral

taken over its surface. For a Somigliana dislocation the effective surface is made up of the two
faces of the cut on either side of the discontinuity surface S (figure 1d). If p7} is the stress produced
by the dislocation the surface traction pf}n; is continuous across S although the individual com-
ponents of p}} are not. Since the two faces of the cut are displaced relatively by b the energy
required to establish the dislocation becomes

1
W=— éfsbip?jnjd& (2.5)

This is a positive quantity despite the negative sign which comes about as follows. In figure 14
the face of the cut on, say, the convex side of § has a normal, pointing out of the material, which
is in the opposite direction to the normal we have assigned to S. Combined with the sign con-
vention for b (§2) this gives the minus sign in (2.5). The quantity (2.5) is also, of course, the
energy released if the dislocation disappears.

If the dislocation forms in the presence of a pre-existing stress pj we have to take account of
the work done at the discontinuity surface against the traction pfjn; and the work done is

W=~ (o 18 b, (26)
S

which can also be written more symmetrically as
W == [ 40088 bonyas, (27

where p}; = p and p; = p& +p5 are the initial and final stresses. As explained in § 1, when
a freely slipping crack forms a Somigliana dislocation is generated which completely annuls the
traction pfn;; over S, so that pf; = 0, and (2.6) or (2.7) gives a negative energy of formation

1 1
W = _éfqpf;binjds = +§fqubi”fds>

so that, comparing with (2.5), there is an energy release when the crack appears which is the
same as the energy released when an equivalent dislocation disappears in the absence of an
external stress.

Two remarks should perhaps be made about (2.6). The first is that although it represents the
work required to form the dislocation in the presence of g4, not all this work goes into elastic
energy; some of it goes to increase the potential energy of the loading mechanism responsible
for 3, in geophysical situations ultimately the Earth’s gravitational field. The other is that it is
assumed that p;} does not vary appreciably as the dislocation forms (or disappears), a condition
which will often, but not always, be fulfilled.

The integrals (2.6) and (2.5) only give the total energy released when a discontinuity appears
or disappears. If we actually know how the displacement discontinuity varies with time during
these processes the radiation field can in principle be calculated starting from a generalization
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to time-dependent b of the expression (2.4) for the ficld of an elementary dislocation (Nabarro
1951; Eshelby 1962; Kosevich 1963).

3. VOLTERRA DISLOCATIONS

The modern theory of dislocations (Nabarro 1967) confines itself almost entirely to the special
case where the displacement discontinuity b is a constant. We shall call such dislocations Volterra
dislocations, though strictly speaking they arc a combination of Volterra’s dislocations of the
first, second and third kinds only.

If b is constant (2.1) can be transformed into

b I bxdl 1 1 bxdl-R
ulr) = —— 0 22X, 1 gpad| 2X&R 3.1
( ) 4 47'C o4 R +4TC 2(1-0’)g1a fo R ( )
(Burgers 1939). Here R=r—r, R=|r—r|,

dlis an clement of the curve C at r’ and R
‘n
2= SR—st
is the solid angle subtended by S at r. (To verify that (3.1) agrces with (2.1) for constant b use
Stokes’s theorem to turn the line integrals into surface integrals.)

It is known that the gradient of 2is independent of S and conscquently also continuous across it.
Hence the gradient of u, and with it the strain, rotation, and stress around the Volterra dislocation,
arc independent of S. If this continuous gradient is now integrated to recover the displacement
we f{ind that u is a multiple-valued quantity which changes by + b cach time the curve C is
encircled by the path of integration. It is almost equivalent to say that u is only defined modulo b,
i.e. to within a multiple of b. Becausc of this we cannot observe the discontinuity surface of a
Volterra dislocation with discontinuity vector b in a crystal with lattice parameter b, because
(unless we actually watch the process of displacement) the displacement of one of a lattice of
identical atoms can only be measured modulo b. It is these facts which make Volterra dislocations
so important in crystal physics. Such a dislocation can be regarded as a line singularity (disloca-
tion loop) characterized by a curve C and a constant vector b, known in this connection as the
Burgers vector.

The simplest kind of Volterra dislocation is one where the curve C (the dislocation lince) is an
infinite straight linc and the discontinuity surface §'is a hall-planc bonded by C. In figure 34 the
point C indicates the trace of the curve C and CA is the trace of S. If the Burgers vector b is
parallel to the curve C, and so perpendicular to the plane of the figure, we have a serew dislocation.
The cross products b x dlin the linc integrals of (3.1) arc then zero, and the term in £ gives a dis-

placement b

Uy = %0, u, =0, wu,=0, (3.2)

where the angle 0 is as indicated in the figurce and is limited by —n < 0 < = so as to produce
a discontinuity across CD rather than across some other line through C.

The planc AE can be made stress-free by introducing a screw dislocation of opposite sign at the
‘image’ point C’ so that the displacement duc to a screw dislocation at G in a semi-infinite
medium bounded by the stress-free plance BE is

b , ¢
Uy = 2—7_':(0—(9 ). (3.8)
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The origin of 6" has been chosen so that the displacement is precisely + 14 on either side of D,
and so thatif 0’, like 6, is limited by — = < 0" < = the discontinuity surface associated with 6’ does
not intersect the medium.

Ficure 3. (a) Screw edge dislocations in a half-space. (b) Synthesis of a fault with
variable slip from elementary screw and edge dislocations.

In geological terms the situation described by figure 34 and equation (3.3) represents a strike-
slip fault, but one with the special property that the slip is constant from D to C and zero beyond C.
How do we describe a strike-slip fault when the slip varies in some other way? We can, of course,
go back to the general Somigliana dislocation. Alternatively, we can build up the fault using
Volterra dislocations. Figure 36 shows the relative slip plotted as ordinate along DC. The line
PQC represents the case we have been considering, constant slip produced by a single dislocation
with Burgers vector 4 at C. Suppose that in fact the slip tapers off as shown by the smooth curve.
Introduce 7 dislocations with equal Burgers vectors b, = b/n at points p,q,r, .... Since the slip
changes by b, each time a dislocation is passed the z dislocations will produce a stepped slip curve,
and by choosing the positions of p, q, r, ... suitably the stepped curve may be made to agree with
the smooth curve at n points. By increasing # (and thus decreasing 4,) the agreement can be
improved indefinitely. In the limit n->c0, by— 0 we can say that the fault, actually a Somigliana
dislocation, has been simulated by a continuous distribution of infinitesimal Voltarra dislocations.
(For a general treatment on these lines see Bilby & Eshelby 1968; for a geophysical application
see Weertman 1964.)

Suppose next that the relative slip of the two faces of the slip plane DC is in the plane of the
figure instead of perpendicular to it, and of course parallel to DC. If the relative slip is constant
along the slip plane as far as G and zero beyond it we have an edge dislocation. Its field is con-
siderably more complex than (3.2) or (3.3).

In geological terms the edge dislocation is a dip-slip fault for which the relative slip is constant.
The more realistic case of non-constant slip can be treated in the way already described for the
strike-slip case, except that, in figure 35, p,q,r, ..., must now be edge dislocations.

For three-dimensional situations of the kind shown in figure 1 it may be possible to use
a Volterra dislocation to approximate to a Somigliana dislocation. For example (3.1) will give
the correct elastic field at remote points if b is taken to be a suitable average of b(r) over the surface
S of the Somigliana dislocation. If something better is needed a Somigliana dislocation can be
synthesized from Volterra dislocations. The method illustrated in figure 35 can be extended to
situations which are not two-dimensional (Leibfried 1954; Eshelby 1963), but it is not very
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advantageous. It is better to regard the discontinuity surface of the Somigliana dislocation as
divided into a mosaic of small areas across each of which & is sensibly constant (cf. the remark
preceding (2.4)). Then each elementary area is equivalent to a small dislocation loop to which
the appropriate formula may be applied.
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